Symmetry, Codes, and the Failure of Linear Math

When I look at the genetic code, I see the most important discovery of the 21st century: that it is complex, nonlinear, probabilistic, and fundamentally a spatial code. This is not just a small correction to biology; it is a paradigm shift. It redefines how we must think about math, life, and the universe itself.

Why is this so important? First, because it is obviously correct once you see it. Second, because the genetic code is the most important thing in the universe—the bridge between chemistry and life. Third, because the genetic code teaches us how life does math, and it is not doing math the way humans do. Fourth, because life cannot use a math that is different from the universe's math, the genetic code teaches us something about how *all* of reality computes.

The Wrong Kind of Math

Gödel showed us long ago that math must always be invented, and that there are infinitely many possible "maths." Humans, unfortunately, have only invented one kind of math—point, line, plane, volume—and built everything on top of it. This system is purely inductive: it assumes what seems true, enshrines it, and builds endless complexity. That's why it fails, and the genetic code is the clearest case of all. The flat codon table is the worst failure in the history of science.

Why? Because man inverted cause and effect. We treated points and lines as fundamental and then tried to build volumes out of them. But in the universe, volume is first. The universe is a volume that manifests lines, planes, and points as subsets. By clinging to the wrong kind of math, science has enshrined mistakes as dogma and developed a culture that resists correction—a dynamic Kuhn described as the stubbornness of paradigms.

Crick's Mistakes

The history of the genetic code makes this painfully clear. Francis Crick was a chemist who became famous for modeling the structure of DNA. When he turned to the code itself, he assumed he already knew what a code was, without ever articulating or questioning it. He dismissed information theory, ignored the insights of Boltzmann, Shannon, Schrödinger, Gamow, Einstein, and even Von Neumann—perhaps the most concrete mathematical thinker of all.

Crick treated molecules as the only reality. He read molecules and assumed the code must be dictated by them. He dismissed Gamow's triangle code because "molecules must have order." He failed to see that *code makes everything*, not the other way around. As a programmer, I knew this instinctively: the structure of the logic dictates the sequences, not the molecules. Crick built a model that wasn't a discovery at all—it was an invention, and an ugly one. And then science enshrined it as truth.

Darwin as Mathematician

Ironically, the greatest mathematician biology ever produced was Darwin, who never thought of himself as one. Natural selection is a plainspoken, multivariate computation that explains how complexity evolves. Crick dismissed it, claiming the genetic code was frozen, prevented from evolving. He could not have been more wrong.

To me, the logic is simple: if the universe evolves life, then the universe itself must evolve. What selection criterion could it use? The answer became obvious as soon as I saw the true genetic code: symmetry. Evolution does not proceed by picking winners; wrong answers are eliminated. Symmetry is the criterion, and elimination is the process. That is how space itself computes.

This builds a logical stairway from space, to life, to the brain, and beyond. It is the simplest possible explanation, which is why Ockham's Razor points to it. Linear explanations are always complex constructions; only symmetry reduces everything to one principle.

Discovery vs. Invention

Crick himself said that scientists like him and Einstein do not create—they discover. But in the case of the genetic code, Crick created, and what he created was false. I merely discovered. What I discovered is beautiful, simple, and inevitable: the codon table is not flat, but round, because the code itself is spatial and symmetrical.

The beauty is what grips me most. I see the molecules of life and wonder: what code made them? And what made the code that made them? My discovery answers these questions. That is why it is so beautiful to me: I can see the logic with my own eyes, not as a theory but as a demonstration.

Why Nobody Wants to See

Making the discovery was easy. Getting people to look has been hard. That still blows my mind. It is as if I were holding Galileo's telescope and showing the moons of Jupiter, and people refused to look through the lens.

I can prove what I say. A flat codon table is impossible to understand; a round one explains itself. With physical objects—the G-Ball, the dice, the codon table—the logic is instantly visible. Words and formulas only obscure it. The discovery is simple and beautiful, but ordinary people find it impossible because they are trained to expect complexity.

Science protects its errors by turning induction into a feature rather than a bug. Once Crick's model was accepted, nobody could question it, because Crick was "right by definition." The result is that the greatest and simplest idea of our time remains hidden in plain sight.

Conclusion

I don't think of myself as a mathematician any more than Darwin did. But like Darwin, I stumbled onto a logic that explains life. Darwin explained species with natural selection. I have explained the genetic code with symmetry.

This discovery is not outrageous once you see it whole. It is the simplest possible explanation of everything. And it can be demonstrated, not argued. The tragedy is that nobody wants to see it. The beauty is that it only takes a glance at the round codon table to understand.